Đây là ví dụ về tư duy phân tích và ứng dụng dữ liệu mà tôi thường dùng để giúp mọi người bắt đầu với dữ liệu (với 1 cây bút, giấy và máy tính).
Ví dụ này sẽ không biến bạn trở thành chuyên gia về dữ liệu, tuy nhiên sẽ giúp bạn cảm thấy quen thuộc hơn với dữ liệu cũng thấy được những cơ hội từ việc phân tích dữ liệu.
Chúng ta sẽ bắt đầu với một hiện tượng – trễ giờ họp.
Xác định câu hỏi: Có phải các cuộc họp luôn diễn ra muộn hơn so với thời gian dự kiến. Điều này có đúng không?
Tiếp theo, hãy nghĩ đến các dữ liệu có thể giúp bạn trả lời câu hỏi này cũng như một kế hoạch để tìm ra chúng. Viết ra các định nghĩa và quy trình để thu thập dữ liệu. VD, định nghĩa về thời điểm cuộc họp bắt đầu. Đó là lúc có người nói “Chúng ta bắt đầu họp nào!” ? Và bạn có thể để ý, khi có thêm người mới (đặc biệt là lãnh đạo), cuộc họp gần như sẽ bắt đầu lại từ đầu. Vậy bạn nên chọn mốc thời gian nào?
Tiếp theo bạn có thể bắt đầu việc trình bày. Việc trình bày tốt giúp bạn hiểu rõ dữ liệu cũng như trao đổi, truyền đạt với mọi người dễ dàng hơn. Có nhiều công cụ nhưng trong ví dụ này tôi sẽ vẽ tay. Tôi có một biểu đồ như hình dưới với trục x là thời gian trong ngày (các ngày trong tuần) và trục y là số phút muộn họp.

Chúng ta hãy trở lại với câu hỏi ban đầu và đưa ra một số nhận xét. Theo biểu đồ, trong vòng 2 tuần, 10% cuộc họp diễn ra đúng giờ, và số phút muộn trung bình là 12 phút.
Bạn không nên dừng lại ở đây. Hãy tiếp tục đặt câu hỏi: Thì sao? Nếu như 2 tuần này là điển hình, thì tôi lãng phí 1 giờ mỗi tuần, điều này tiêu tốn của công ty 1 số tiền x mỗi năm.
Sự phân tích sẽ kết thúc nếu bạn không đặt thêm các câu hỏi. Nếu như 80% các cuộc họp diễn ra trong khoảng vài phút so với giờ hẹn ban đầu thì chúng ta có thể trả lời câu hỏi ban đầu rằng các cuộc họp diễn ra đúng giờ và dừng việc phân tích.
Nhưng trong trường hợp này, ta có thể phân tích thêm.
Cùng tìm hiểu về phương sai (variation). Theo như biểu đồ thì thời gian muộn từ 8 – 20 phút là điển hình. 1 số cuộc họp diễn ra đúng giờ, 1 số khác lại muộn đến 30 phút. Sẽ là lý tưởng nếu bạn có thể kết luận rằng nếu đi muộn 10 phút thì sẽ đúng lúc cuộc họp bắt đầu, tuy nhiên phương sai ở đây là quá lớn để kết luận như vậy.
Từ dữ liệu chúng ta còn có thể biết thêm gì nữa? Trong 6 cuộc họp diễn ra đúng giờ, nếu tìm hiểu kỹ hơn, có thể thấy 6 cuộc họp này đều do Phó giám đốc về tài chính phụ trách. Từ đây bạn có thể làm gì tiếp?
Ở mức độ cá nhân, để tiết kiệm thời gian, chúng ta có thể học tập phó giám đốc để tìm ra những cách giúp cuộc họp diễn ra đúng giờ.
Ở mức độ công ty, chúng ta chưa rõ kết quả này đã là điển hình hay chưa, liệu các lãnh đạo khác có giúp việc họp diễn ra đúng giờ như Phó giám đốc về tài chính hay không. Từ đó có thể đặt ra một số câu hỏi như: Kết quả có đồng nhất giữa người tổ chức họp hay không, có ngày cụ thể nào trong tuần ảnh hưởng đến việc họp muộn hay không. Hay xa hơn là nên họp qua video call hay họp trực tiếp? Hoặc có mỗi quan hệ giữa cấp bậc của người tổ chức họp và số phút muộn hay không?
Với mỗi hoặc 1 vài câu hỏi như thế này, bạn quay lại bước đầu, thực hiện lại các bước, từ đó tìm ra kết luận. Với dữ liệu, bạn có thể hiểu rõ hơn về hiện tượng trễ giờ họp, từ đó đưa ra một số hướng giải quyết.
Việc sử dụng Tư duy phân tích và phân tích dữ liệu không hề xa lạ, mà nếu được thực hiện hiệu quả, có thể giúp cải thiện hoạt động của tổ chức.
Nguồn: Thomas C. Redman – Havard Business Review Press